	สาขาวิชา	อิเล็กทรอนิกส์	9	
	ชื่อวิชา	ไมโครคอนโทรลเลอร์	เบงานการทดสล	94W 14
	รหัสวิชา	20105-2105		หน้าที่
TECHNICAC	ชื่องาน	งานโปรแกรมวัดระยะด้วยโมดูลอัลตร้าโจ	ชนิค HC-SR04	108

คำชี้แจง ให้ผู้เรียนทุกคนทำการทดลองตามใบงานการทดลองที่ 14 เรื่องโปรแกรมวัดวัดระยะด้วย โมดูลอัลตร้าโซนิค HC-SR04 ตามขั้นตอนการปฏิบัติงาน

จุดประสงค์ทั่วไป

เพื่อให้มีทักษะการปฏิบัติงานโปรแกรมวัดระยะด้วยโมดูลอัลตร้าโซนิค HC-SR04

จุดประสงค์การเรียนรู้เชิงพฤติกรรม (เพื่อให้ผู้เรียน....)

- 1. สามารถใช้โปรแกรม Arduino IDE ในการเขียนโปรแกรมภาษา C เบื้องต้นได้อย่างถูกต้อง
- 2. สามารถใช้งานไมโครคอนโทรลเลอร์ บอร์ด Arduino UNO R3 เบื้องต้นได้อย่างถูกต้อง
- สามารถประกอบและทดสอบวงจรวัดวัดระยะด้วยโมดูลอัลตร้าโซนิค HC-SR04ได้อย่าง ถูกต้อง
- 4. สามารถเขียนโปรแกรมควบคุมการวัดวัดระยะด้วยโมดูลอัลตร้าโซนิค HC-SR04ได้อย่าง ถูกต้อง
- 5. สามารถประยุกต์ใช้งานไมโครคอนโทรลเลอร์บอร์ด Arduino UNO R3 เบื้องต้นได้อย่าง ถูกต้อง
- 6. มี้กิจนิสัยในการแสวงหาความรู้เพิ่มเติม การทำงานด้วยความประณีต รอบคอบและปลอดภัย

เครื่องมือและอุปกรณ์

1.	โปรแกรม Arduino IDE 1.8.4 หรือสูงกว่า	1	โปรแกรม
2.	สาย USB สำหรับ Arduino Uno R3	1	เส้น
3.	ชุดทดลอง Arduino Uno R3 พร้อมสายต่อวงจร	1	ଖ୍ମ
4.	เครื่องคอมพิวเตอร์แบบพกพา	1	เครื่อง
5.	แผงต่อวงจร	1	ตัว
6.	มัลติมิเตอร์	1	ตัว
7.	เครื่องมือประจำตัว	1	ଖ୍ମ

ข้อห้ามและข้อควรระวัง

- 1. ไม่เล่นและหยอกล้อกันในเวลาปฏิบัติงาน
- 2. ควรระวังไม่วางบอร์ด Arduino Uno R3 หรือชีลต่างๆ บนโต๊ะโลหะหรือที่วางที่เป็นโลหะ เพราะอาจเกิดการลัดวงจรของภาคจ่ายไฟได้
- ไม่ควรต่อสายต่อวงจรในบอร์ด Arduino Uno R3 ทิ้งไว้ ควรถอดสายต่อวงจรออกให้หมด เพราะผล การทดลองอาจเกิดการผิดพลาดไม่เป็นไปตามทฤษฎีได้
- ไม่ควรถอดสายสายโหลด USB เข้าออกตลอดเวลา เพราะอาจทำให้ภาคจ่ายไฟของบอร์ด Arduino Uno R3 เสียหายได้
- ควรระวังเครื่องมือและอุปกรณ์เสียหายจากการปฏิบัติงานไม่ถูกต้องตามขั้นตอนและไม่ ปลอดภัย

	สาขาวิชา	อิเล็กทรอนิกส์	٩	
	ชื่อวิชา ไมโครคอนโทรลเลอร์	ไมโครคอนโทรลเลอร์	งบจานการพทศอจท 14	
	รหัสวิชา	20105-2105		หน้าที่
CCHNICK	ชื่องาน	งานโปรแกรมวัดระยะด้วยโมดูลอัลตร้าโซนิค HC-SR04		109

ทฤษฎี

เสียงเป็นคลื่นชนิดหนึ่งที่สามารถเดินทางผ่านอากาศได้ดังนั้นถ้าใช้คุณสมบัตินี้มาสร้าง เครื่องวัด ระยะทางโดยอาศัยการเดินทางของเสียงผ่านอากาศก็สามารถทำได้เช่นกัน เนื่องจากความถี่ เสียงจะมีช่วง ของความถี่ช่วงหนึ่งที่มนุษย์สามารถได้ยินเสียงได้คืออยู่ในช่วง 20Hz-20kHz ดังนั้นหาก ใช้เสียงในช่วงนี้ ก็จะเป็นการรบกวนการได้ยินของมนุษย์ด้วย ดังนั้นจึงต้องใช้ความถี่ที่สูงกว่าความถี่ เสียงปกติเพื่อ หลีกเลี่ยงการได้ยินของมนุษย์ในปัจจุบนได้มีการใช้ความถี่ 40kHz เพื่อใช้ในการวัด ระยะทางความถี่นี้ เป็นความถี่ที่สูงกว่าเสียงที่มนุษย์ได้ยินจึงเรียกเสียงนี้ว่า "อัลตร้าโซนิค" โมดูลวัด ระยะทางโดยใช้อัลตร้าโซนิคจะประกอบด้วยลำโพงที่ส่งคลื่นเสียงและไมโครโฟนที่ทำหน้าที่เป็นตัวรับ เสียง แต่เนื่องจากตัวลำโพงในโมดูลมีขนาดเล็กเสียงที่ส่งออกจึงมีเสียงเบาทำให้ระยะของการวัดไม่ ไกลนักซึ่งจะมีระยะไม่ เกิน 5 เมตรและมีมุมที่ใช้งานแคบดังรูป

รูปที่ 14.1 แสดงกราฟเปรียบเทียบคาแรงดันกับระยะทาง

โมดูลอลัตราโซนิคสำหรับวัดระยะทางถูกสร้างมีให้เลือกใช้หลายรุ่นแต่ละรุ่นมีข้อแตกต่างกัน อย่างเดียวคือความแม่นยำของการวัดดังตาราง การเลือกใช้งานหากระดับความแม่นยำไม่สำคัญมาก นัก โมดูล HR-SC04 จึงเหมาะที่จะนำมาทดลองใช้ในใบงานเนื่องจากเป็นโมดูลวัดระยะที่มีราคาถูก กว่ารุ่นอื่นๆ

ตารางที่ 14.1 แสดงคุณสมบัติของอัลต้าโซนิคแต่ละรุ่น

	HR-SC04	HY-SRF05	US-100
1. Sensor angle	< 15 degrees	< 15 degrees	< 15 degrees
2. Detection distance	2cm-450cm	2cm-450cm	2cm-450cm
3. precision	~3 mm	~2 mm	~1 mm
4. Working Voltage	5VDC	5VDC	5VDC
5. Static current	< 2mA	< 2mA	< 2mA

การเขียนโค้ดโปรแกรมเพื่อวัดระยะทางด้วยโมดูลอัลต้าโซนิคสามารถเขียนโดยไม่พึงไลบรารี่ ก็ ได้ หรือถ้าหากต้องการใช้ไลบรารี่เพื่อให้การเขียนโค้ดง่ายขึ้นสามารถดาวน์โหลดได้ที่

	สาขาวิชา	อิเล็กทรอนิกส์	9	
	ชื่อวิชา	ไมโครคอนโทรลเลอร์	เบงานการทดสองท 14	
A LAND CON	รหัสวิชา	20105-2105		หน้าที่
ECHNICAU	ชื่องาน	งานโปรแกรมวัดระยะด้วยโมดูลอัลตร้าโจ	ชนิค HC-SR04	110

ตารางที่ 14.2 แสดงแหล่งดาวน์โหลดไลบรารี่สำหรับอัลต้าโซนิค

ไลบรารี่	แหล่งดาวน์โหลด	
Ultrasonic.h	https://github.com/ErickSimoes/Ultrasonic	

มีขั้นตอนการดำเนินการเพื่อนำไลบรารี่มาใช้งานดังนี้

1. ดาวน์โหลดไลบรารี่ซึ่งเป็นไฟล์ Zip ดังรูป

Clone with HTTPS ③ Use Git or checkout with SVN using the web URL	vnload 🔻
Use Git or checkout with SVN using the web URL	
TEMPLATE.md	
entation https://github.com/ErickSimoes/Ultrasoni	Ē.
Open in Desktop Download Z	IP
neout	ano ago

รูปที่ 14.2 แสดงการดาวน์โหลดไลบรารี่ที่นำมาใช้งาน

 ทำการเพิ่มไลบ⁵ารี่ลงในโปรแกรม Arduino IDE โดยการเพิ่มจากไฟล์ zip แล้วทำการหา ไฟล์ zip ที่ได้จากการดาวน์โหลดในข้อ 1

00	la	b12-	I Ar	duino 1.8.4				
File	e I	Edit	Sket	ch Tools Help				
		Ð		Verify/Compile	Ctrl+R			
		_		Upload	Ctrl+U			
	lat	12-		Upload Using Programmer	Ctrl+Shift+U			
	1	#i		Export compiled Binary	Ctrl+Alt+S			
	2	#d		Show Sketch Folder	Ctrl+K	۱t	o connect DH	IT22
	3	#d		Include Library	;		Δ	,DHT21,DHT22
	4	DH		Add File			Manage Libraries	
	5	vo	тч	secup() (Add 7ID Library	
	6		Ser	ial.begin(9600)	;		Add .Zir Library	
				—				

รูปที่ 14.3 แสดงการเพิ่มไลบรารี่ที่เป็นไฟล์ zip ลงในโปรแกรม Arduino IDE

ฟังก์ชั่น Arduino ที่ใช้งานในใบงานการทดลอง

 ฟังก์ชั่นกำหนดโหมดการทำงานให้กับขาพอร์ต โดยสามารถกำหนดได้ทั้งขาดิจิทัลโดยใส่ เพียงตวัเลขของขา (0, 1, 2,...13) และขาแอนาลอกที่ต้องการให้ทำงานในโหมดดิจิทัลแต่ การใส่ขา ต้องใส่ A นำ หน้าซึ่งใช้ได้เฉพาะ A0, A1,...A5 ส่วนขา A6 และ A7 ไม่สามารถใช้งานในโหมดดิจิทัล ได้ รูปแบบของฟังก์ชั่นเป็นดังนี้

pinMode(pin,mode);

pin : หมายเลขขาที่ต้องการเซตโหมด,mode : INPUT, OUTPUT, INPUT_PULLUP

	สาขาวิชา	อิเล็กทรอนิกส์	9	
	ชื่อวิชา	ไมโครคอนโทรลเลอร์	เบงานการทดลองท 14	
P P P P P P P P P P P P P P P P P P P	รหัสวิชา	20105-2105		หน้าที่
ECHNICK	ชื่องาน	งานโปรแกรมวัดระยะด้วยโมดูลอัลตร้าโซนิค HC-SR04		111

2. ฟังก์ชั่นส่งค่าลอจิกดิจิทัลไปยังขาพอร์ต ค่า HIGH เป็นการส่งลอจิก 1 และค่า LOW เป็น การ ส่งลอจิก 0 ออกไปยังขาพอร์ต ฟังก์ชั่นนี้จะทำงานได้ต้องมีการใช้ฟังก์ชั่น pinMode ก่อน รูปแบบของฟังก์ชั่นเป็นดังนี้

digitalWrite(pin,value);

pin : หมายเลขขาที่ต้องการเขียนลอจิกออกพอร์ต ,value : HIGH หรือ LOW

 ฟังก์ชั่นอ่านค่าลอจิกดิจิทัลที่ขาพอร์ต เป็นการอ่านค่าเข้ามาซึ่งอาจนำมาเก็บไว้ในตัวแปรไว้ ตรวจสอบลอจิกทีหลังหรือจะตรวจสอบลอจิกแบบทันทีก็ได้ ฟังก์ชั่นนี้จะทำงานได้ต้องมี การใช้ ฟังก์ชั่น pinMode ก่อน รูปแบบของฟังก์ชั่นเป็นดังนี้

digitalRead(PIN); pin : หมายเลขขาพอร์ตที่ต้องการอ่านลอจิก

ตัวอย่างเช่น value=digitalRead(2); หมายถึง อ่านค่าลอจิกที่ขา D2 มาเก็บไว้ในตัวแปร value if(digitalRead(2)==LOW) หมายถึง ตรวจสอบขา D2 ว่าเป็นลอจิก 0 หรือไม่

 ฟังก์ชั่นหน่วงเวลาหรือฟังก์ชั่นหยุดค้าง การใช้งานสามารถกำหนดตัวเลขของเวลาที่ ต้องการหยุดค้าง ตัวเลขที่ใส่เป็นตัวเลขของเวลาหน่วยเป็นมิลลิวินาที ตัวเลขของเวลาที่ใส่ ได้สูงสุดคือ 4,294,967,295 ซึ่งเป็นขนาดของตวัแปร unsigned long รูปแบบของฟังก์ชั่นเป็นดังนี้

Delay(ms); ms : ตัวเลขที่หยุดค้างของเวลาหน่วยมิลลิวินาที (unsigned long)

 ฟังก์ชั่นกำหนดความเร็วในการสื่อสารทางพอร์ตอนุกรม รูปแบบของฟังก์ชั่นเป็นดังนี้ Serial.begin(speed); speed: ตัวเลขของอัตราเร็วในการสื่อสารผ่านพอร์ตอนุกรม

6. ฟังก์ชั่นส่งข้อมูลออกพอร์ต เป็นฟังก์ชั่นที่ใช้ในการส่งข้อมูลออกทางพอร์ตอนุกรมหรือพิมพ์ ข้อมูลออกทางพอร์ตเพื่อแสดงผลที่จอคอมพิวเตอร์ เมื่อพิมพ์เสร็จตัวเคอร์เซอร์จะรออยู่ที่ท้ายสิ่งที่ พิมพ์นั้น ๆ รูปแบบของฟังก์ชั่นเป็นดังนี้

Serial.print(val); Serial.print(val, format);

7. ฟังก์ชั่นส่งข้อมูลออกพอร์ต คล้ายกับฟังก์ชั่น Serial.print ต่างกันตรงที่เมื่อพิมพ์เสร็จตัว เคอร์เซอร์จะขึ้นมารอยังบรรทัดใหม่ ดังนั้นเมื่อสั่งพิมพ์ครั้งถัดไปข้อมูลที่ปรากฏจะอยู่ที่บรรทัดใหม่ แทนที่จะต่อท้ายเหมือนกับฟังก์ชั่น Serial.print รูปแบบของฟังก์ชั่นเป็นดังนี้

Serial.println(val); Serial.println(val, format);

8. ฟังก์ชั่นวัดความกว้างของพัลซ์ โดยค่าที่วัดได้เป็นเวลาหน่วยเป็นไมโครวินาที (uS) ผู้ใช้งาน สามารถระบุลอจิกของสัญญาณที่ใช้ในการวัดได้ เช่นเมื่อกำหนดลอจิกที่ใช้ตรวจจับเป็น HIGH ฟังก์ชั่นจะเริ่มนับเวลาเมื่อขาสัญญาณที่ตรวจจับเป็นลอจิก HIGH โดยนับเวลาไป จนกว่าสัญญาณจะ เป็นเป็น LOW เวลาที่ได้เป็นตัวเลขที่มีหน่วยเป็นไมโครวินาที รูปฟังชั่น เป็นดังนี้

pulseIn(pin, value);

pin: ขาพอร์ตที่ใช้ในการตรวจจบัสัญญาณพลัซ์

value: ค่าลอจิกที่ใช้ก าหนดเพื่อใช้ในนับเวลาโดยฟังก์ชั่นจะหยุดนับเมื่อค่า ลอจิก

เป็นตรงข้าม

```
ตัวอย่างเช่น duration = pulseIn(12, HIGH);
```

	สาขาวิชา	อิเล็กทรอนิกส์ ในมวนการทดล		asueaa wa 14	
	ชื่อวิชา	ไมโครคอนโทรลเลอร์	เบงานการทดลองท 14		
R RALL CON	รหัสวิชา	20105-2105	05-2105		
CCHNICK	ชื่องาน	งานโปรแกรมวัดระยะด้วยโมดูลอัลตร้าโร	ชนิค HC-SR04	112	

หมายถึง วัดความกว้างของพัลซ์โดยการจับเวลา เมื่อขา D12 เป็นลอจิก HIGH จนกระทั่งขา D12 มีการเปลี่ยนลอจิกเป็น LOW โดยค่าที่ได้เป็นตัวเลขหน่วยเป็น ไมโครวินาทีแล้วเอา ไปเก็บไว้ในตัวแปร duration

ฟังก์ชั่นใช้งานของไลบรารี่ Ultrasonic.h

การอ่านค่าจากโมดูล Ultrasonic จำเป็นต้องใช้ไลบรารี่ช่วยงาน ซึ่งไลบรารี่ไม่ได้ถูกเพิ่มเข้า มาใน ตัวโปรแกรม Arduino IDE ตั้งแต่แรกจำเป็นต้องติดตั้งเพิ่มเติม โดยมีฟังก์ชั่นให้ใช้งานดังนี้

 ฟังก์ชั่นกำหนดขาเชื่อมต่อ ใช้ในการระบุขาที่ใช้เชื่อมต่อให้ตัวโปรแกรมรับรู้ รูปแบบดังนี้ Ultrasonic ultrasonic(Trig PIN,Echo PIN);

Trig PIN : ตัวเลขระบุขาพอร์ตที่ใช้เชื่อมต่อกับขา Trig ของโมดูล

Echo PIN : ตัวเลขระบุขาพอร์ตที่ใช้เชื่อมต่อกับขา Echo ของโมดูล

ตัวอย่างเช่น Ultrasonic ultrasonic(9,8); หมายถึง ต่อไปในโปรแกรมจะใช้ชื่อ ultrasonic ในการเรียกใช้งานโมดูล โดยมีการ เชื่อมต่อขาพอร์ต D9 เข้าที่ขา Trig และขาพอร์ต D8 เข้าที่ขา Echo ของโมดูล

ฟังก์ชั่นอ่านค่าระยะทาง ใช้อ่านค่าระยะทางจากตัวโมดูลโดยสามารถระบุหน่วยที่ต้องการ
 วัดได้ 2 แบบคือ เซนติเมตร (CM) และหน่วยที่เป็นนิ้ว (INC) รูปแบบเป็นดังนี้

.distanceRead();

Unit : หน่วยที่ต้องการวัด CM, INC

ตัวอย่างเช่น Serial.print(ultrasonic. distanceRead (CM));

หมายถึง แสดงผลระยะที่วัดได้หน่วยเป็นเซนติเมตรทางพอร์ตอนุกรม

การเปลยื่นค่า time out เพื่อปรับระยะการวัด (สำหรับเมื่อใช้งานไลบรารี่)

ค่าเริ่มต้นของไลบรารี่ก าหนดค่า time out ไว้ที่ 20000UL ทำให้สามารถวัดระยะได้ไกลสุด ประมาณ 3.4 เมตร การใช้ฟังก์ชั่นที่มีการป้อนค่า 2 ค่าที่เป็นขาเชื่อมต่อดังนี้

Ultrasonic ultrasonic(Trig PIN,Echo PIN);

Trig PIN : ขา Trig ของโมดูลอลัตร้าโซนิค

Echo PIN : ขา Echo ของโมดูลอลัตร้าโซนิค

ผู้ใช้สามารถเปลี่ยนค่าระยะการวัดได้ โดยการกำหนดค่า TimeOut เข้าในฟังก์ชั่น ตัวอย่างเช่น

Ultrasonic ultrasonic(Trig PIN,Echo PIN,MaxTimeout);

Trig PIN : ขา Trig ของโมดูลอลัตร้าโซนิค

Echo PIN : ขา Echo ของโมดูลอลัตร้าโซนิค

Max.TimeOut : ค่าเวลา Time out สูงสุดสำหรับวัดระยะที่ต้องการวัด (µs) ตัวอย่างเช่น Ultrasonic ultrasonic(9,8,29000UL);

หมายถึง ใช้ชื่อ ultrasonic แทนตัวเซนเซอร์ ขา Trig ของเซนเซอร์เชื่อมต่อเข้าที่ขา D9 ขา Echo ของเซนเซอร์เชื่อมต่อเข้าที่ขา D8 ค่า TimeOut เท่ากับ 29000 µs ซึ่ง สามารถวัด ระยะได้สูงสุดประมาณ 5 เมตร

	สาขาวิชา			
ALL BURNER DEPART	ชื่อวิชา	ไมโครคอนโทรลเลอร์	- เบงานการพดลองพ 14	
Part Color	รหัสวิชา	0105-2105		หน้าที่
ECHNICK	ชื่องาน	งานโปรแกรมวัดระยะด้วยโมดูลอัลตร้าโร	ชนิค HC-SR04	113

ตารางที่ 14.3 แสดงการวิธีการคำนวณค่า TimeOut เพื่อให้ได้ระยะการวัดที่ต้องการ

ระยะการสูงสุดที่ต้องการ วัด	สูตร	ตัวอย่างการคำนวณ
หน่วยเป็นเซนติเมตร	TimeOut=Max.Distance(cm) * 58	500 cm * 58 = 29000 µs
หน่วยเป็นนิ้ว	TimeOut=Max.Distance(inc) * 148	25 inc * 148 = 3700 µs

หมายเหตุ ค่า Time out ไม่ควรเกินค่าระยะทางที่โมดูลอัลตร้าโซนิคทำงานได้นั่นคือ 450 cm [ที่มา:ครูประภาส สุวรรณเพชร,เอกสารประกอบการอบรม เรียนรู้และลองเล่น Arduino เบื้องต้น (ฉบับปรับปรุงครั้งที่ 1) ,หน้าที่ 160-164.]

ลำดับขั้นการทดลอง

ตอนที่ 1 เขียนโปรแกรมวัดระยะด้วยโมดูลอัลตร้าโซนิค HC-SR04 แบบไม่ใช้ไลบรารี่

แนวคิดการเรียนรู้ คือ เขียนโปรแกรมวัดระยะโดยการใช้โมดูลอัลตร้าโซนิคแบบไม่ใช้ไลบรารี่ แสดงผลที่จอคอมพิวเตอร์ผ่านทางพอร์ตอนุกรมโดยมีขั้นตอนดังนี้

 ประกอบวงจรการวัดระยะด้วยโมดูลอัลตร้าโซนิค HC-SR04 ใช้บอรด Arduino UNO R3 ดังรูป ที่ 14.4

1100	สาขาวิชา	อิเล็กทรอนิกส์	กทรอนิกส์ ครคอนโทรลเลอร์ 05-2105 หน้าที่	
	ชื่อวิชา	ไมโครคอนโทรลเลอร์		
TALL CON	รหัสวิชา	20105-2105		
CCHNICK	ชื่องาน	งานโปรแกรมวัดระยะด้วยโมดูลอัลตร้าโซนิค HC-SR04		114

เนื่องจากโปรแกรมจำลองการทำงานไม่มีโมเดลอัลตราโซนิครุ่น HR-SC04 ให้จำลองจึงต้อง ใช้ โมเดลจากไลบรารี่ที่เพิ่มเข้ามา ซึ่งไลบรารี่ดังกล่าวภายในเป็นซีพียูที่เขียนโค้ดให้ส่งค่าเลียนแบบ อัลตร้า โซนิคซึ่งสามารถปรับค่าได้โดยอาศัยแรงดันควบคุมผ่านการปรับโพเทนธิโอมิเตอร์ ดังนั้นเมื่อ ใช้งาน จะต้องโหลดไฟล์โปรแกรมควบคุมเข้าโมเดลเช่นเดียวกับการจำลองไมโครคอนโทรลเลอร์ ไฟล์ ที่ต้องโหลดเข้าโมเดลเป็นไฟล์ภาษาเครื่องที่มาพร้อมกับไลบรารี่ดังรูป

🔚 UltrasonicLib.rar	5/23/2017 10:34 AM	WinRAR archive
UltraSonicTEP.HEX	12/24/2012 11:33	HEX File
UltrasonicTEP.IDX	1/1/2016 10:42 PM	IDX File
🗃 UltrasonicTEP.LIB	1/1/2016 10:40 PM	Altium Library

รูปที่ 14.5 แสดงไฟล์ภาษาเครื่องสำหรับโมเดลอัลตร้าโซนิค

 เปิดโปรแกรม Arduino IDE จากนั้นพิมพ์โค้ดโปรแกรมวัดระยะด้วยโมดูลอัลตร้าโซนิค HC-SR04โดยใช้บอรด Arduino UNO R3 ตามรูปที่ 14.6 ดังต่อไปนี้

```
1 #define TRIGGER PIN 9 // digital pin D9
                  2 #define ECHO PIN 8 // digital pin D8
                  3 void setup()
                  4 {
                  5
                      Serial.begin (9600);
                      pinMode (TRIGGER PIN, OUTPUT);
                  7
                      pinMode(ECHO_PIN, INPUT);
                  8 }
    START
                  9 void loop()
                 10 {
                 11
                      double duration, distance;
กำหนดค่าเริ่มต้นต่างๆ
                      digitalWrite(TRIGGER PIN, LOW);
                                                                // Get :
                 12
                 13
                      delayMicroseconds(2);
                                                                // stab:
ส่งพัลช์ 10uS ที่ขา Trig
                      digitalWrite(TRIGGER PIN, HIGH);
                                                                // send:
                 14
                 15
                      delayMicroseconds(10);
                                                                // delay
 จับเวลาที่ขา Echo
                 16
                      digitalWrite(TRIGGER PIN, LOW);
                                                                // afte:
                 17
                      duration = pulseIn(ECHO PIN, HIGH);
                                                                // calcu
คำนวณเป็นระยะทาง
                      distance = (duration/2) / 29.1;
                 18
                                                                // sing:
                 19
                      Serial.print(distance);Serial.println(" cm");
    แสดงผล
                      delay(500);
                 20
                 21 }
                                   (ข) โค้ดโปรแกรม
 (ก) ผังงาน
```

รูปที่ 14.6 แสดงโปรแกรมวัดระยะด้วยโมดูลอัลตร้าโซนิค HC-SR04

- 3. บันทึกไฟล์โค้ด ชื่อ Lab14-1
- 4. ทำการ Compile โค้ด Lab14-1
- 5. เชื่อมต่อสาย USB กับ บอร์ด Arduino Uno R3
- 6. Upload โปรแกรม Lab14-1 ลงบอรด Arduino UNO R3

		, , ,		
NIL NA S	สาขาวิชา	อิเล็กทรอนิกส์	<u>ໃນມານຄາຮູທອວ</u> ທີ່ 14	
	ชื่อวิชา	ไมโครคอนโทรลเลอร์	เบา เมกางทุทธ	UNN 14
PHILIP PARK	รหัสวิชา	20105-2105		หน้าที่
ECHNICK	ชื่องาน	งานโปรแกรมวัดระยะด้วยโมดูลอัลตร้า	โซนิค HC-SR04	115
7. สังเก	เตวงจรการทำงาน	และบันทึกผลการทดลอง		
		d sus	۰	
 	ามท้ายการทดลอง	ตอนที่ 1 จากโค้ดโปรแกรม Lab14-1 จง	งตอบคำถามต่อไปนี้	
 8. คำถา 8.1.	ามท้ายการทดลอง บรรทัดที่ 1,2 ทํ	ตอนที่ 1 จากโค้ดโปรแกรม Lab14-1 จง าหน้าที่	งตอบคำถามต่อไปนี้	
 8. คำถา 8.1. 8.2.	ามท้ายการทดลอง บรรทัดที่ 1,2 ทํ บรรทัดที่ 5 ทำห	ตอนที่ 1 จากโค้ดโปรแกรม Lab14-1 จง าหน้าที่ เน้าที่	งตอบคำถามต่อไปนี้	
	ามท้ายการทดลอง บรรทัดที่ 1,2 ทํ บรรทัดที่ 5 ทำง บรรทัดที่ 6,7 ทํ	ตอนที่ 1 จากโค้ดโปรแกรม Lab14-1 จง าหน้าที่ เน้าที่	งตอบคำถามต่อไปนี้ 	
	ามท้ายการทดลอง บรรทัดที่ 1,2 ทํ บรรทัดที่ 5 ทำง บรรทัดที่ 6,7 ทํ บรรทัดที่ 11 ทํ	ตอนที่ 1 จากโค้ดโปรแกรม Lab14-1 จง าหน้าที่ าหน้าที่ าหน้าที่	งตอบคำถามต่อไปนี้ 	
 8. คำถา 8.1. 8.2. 8.3. 8.4. 8.5.	ามท้ายการทดลอง บรรทัดที่ 1,2 ทํ บรรทัดที่ 5 ทำห บรรทัดที่ 6,7 ทํ บรรทัดที่ 11 ทำ บรรทัดที่ 12-16	ตอนที่ 1 จากโค้ดโปรแกรม Lab14-1 จง าหน้าที่ าหน้าที่ เหน้าที่	งตอบคำถามต่อไปนี้ 	
 8. คຳຄາ 8.1. 8.2. 8.3. 8.4. 8.5. 8.6.	ามท้ายการทดลอง บรรทัดที่ 1,2 ทํ บรรทัดที่ 5 ทำง บรรทัดที่ 6,7 ทํ บรรทัดที่ 11 ทํ บรรทัดที่ 12-16 บรรทัดที่ 17 ทํ	ตอนที่ 1 จากโค้ดโปรแกรม Lab14-1 จง าหน้าที่ าหน้าที่ เหน้าที่ ทำหน้าที่	งตอบคำถามต่อไปนี้ 	
 คำถา 8. คำถา 8.1. 8.2. 8.3. 8.4. 8.5. 8.6. 8.7. 	ามท้ายการทดลอง บรรทัดที่ 1,2 ทํ บรรทัดที่ 5 ทำง บรรทัดที่ 6,7 ทํ บรรทัดที่ 11 ทํ บรรทัดที่ 12-16 บรรทัดที่ 17 ทํ บรรทัดที่ 18 ทํา	ตอนที่ 1 จากโค้ดโปรแกรม Lab14-1 จง าหน้าที่ าหน้าที่ หน้าที่ หน้าที่	งตอบคำถามต่อไปนี้ 	

ตอนที่ 2 เขียนโปรแกรมวัดระยะด้วยโมดูลอัลตร้าโซนิค HC-SR04 แบบใช้ไลบรารี่ แนวคิดการเรียนรู้ คือ เขียนโปรแกรมวัดระยะโดยการใช้โมดูลอัลตร้าโซนิคแบบใช้ไลบรารี่ แสดงผลที่จอคอมพิวเตอร์ผ่านทางพอร์ตอนุกรม โดยมีขั้นตอนดังนี้

9. เปิดโปรแกรม Arduino IDE จากนั้นพิมพ์โค้ดโปรแกรมวัดระยะด้วยโมดูลอัลตร้าโซนิค HC-SR04โดยใช้บอรด Arduino UNO R3 ตามรูปที่ 14.7 ดังต่อไปนี้

(ก) ผังงาน

(ข) โค้ดโปรแกรม

รูปที่ 14.7 แสดงโปรแกรมวัดระยะด้วยโมดูลอัลตร้าโซนิค HC-SR04

- 10. บันทึกไฟล์โค้ด ชื่อ Lab14-2
- 11. ทำการ Compile โค้ด Lab14-2
- 12. เชื่อมต่อสาย USB กับ บอร์ด Arduino Uno R3
- 13. Upload โปรแกรม Lab14-2 ลงบอรด Arduino UNO R3

1100	สาขาวิชา	อิเล็กทรอนิกส์	ใบงานการทดลองที่ 14	
	ชื่อวิชา	ไมโครคอนโทรลเลอร์		
Part Part	รหัสวิชา	20105-2105		หน้าที่
ECHNICK	ชื่องาน	งานโปรแกรมวัดระยะด้วยโมดูลอัลตร้าโซนิค HC-SR04		116

14. สังเกตวงจรการทำงานและบันทึกผลการทดลอง

.....

15.1. บรรทัดที่ 1 ทำหน้าที่.....
15.2. บรรทัดที่ 2 ทำหน้าที่.....
15.3. บรรทัดที่ 4 ทำหน้าที่.....
15.4. บรรทัดที่ 8 ทำหน้าที่.....

ตอนที่ 3 เขียนโปรแกรมควบคุมการติดดับของ LED จากระยะห่างของวัตถุ

แนวคิดการเรียนรู้ คือ เขียนโปรแกรมควบคุมการติดดับของ LED จากระยะห่างของวัตถุที่วัด ได้ หากวัตถุวางอยู่ ในระยะต่ำกว่า 30 cm ให้ LED ติดหากระยะของวัตถุเกิน 30 cm ให้ LED ดับ พร้อมแสดงผลระยะที่จอคอมพิวเตอร์ผ่านทางพอร์ตอนุกรม โดยมีขั้นตอนดังนี้

 เปิดโปรแกรม Arduino IDE จากนั้นพิมพ์โค้ดโปรแกรมวัดระยะด้วยโมดูลอัลตร้าโซนิค HC-SR04โดยใช้บอรด Arduino UNO R3 ตามรูปที่ 14.8 ดังต่อไปนี้

รูปที่ 14.8 แสดงโปรแกรมควบคุมการติดดับของ LED จากระยะห่างของวัตถุ

- 17. บันทึกไฟล์โค้ด ชื่อ Lab14-3
- 18. ทำการ Compile โค้ด Lab14-3
- 19. เชื่อมต่อสาย USB กับ บอร์ด Arduino Uno R3
- 20. Upload โปรแกรม Lab14-3 ลงบอรด Arduino UNO R3

1110	สาขาวิชา	อิเล็กทรอนิกส์	ใบงานการทดลองที่ 14	
	ชื่อวิชา	ไมโครคอนโทรลเลอร์		
Park Contraction	รหัสวิชา	20105-2105		หน้าที่
ECHNICA	ชื่องาน	งานโปรแกรมวัดระยะด้วยโมดูลอัลตร้าโซนิค HC-SR04		117

21. สังเกตวงจรการทำงานและบันทึกผลการทดลอง

ตอนที่ 4 งานที่มอบหมาย

เขียนโปรแกรมแจ้งเตือนการเข้าใกล้ (เช่นเดียวกับเซนเซอร์ถอยหลังของรถยนต์) แสดงผลที่ LED จำนวน 4 ตัวโดยมีเงื่อนไขการแสดงผลดังนี้

ระยะตรวจจับ	การติดดับของ LED
s > 1.5m	Ď O O Ď
$1.0m \le s \le 1.5m$	-ờ́ờ́- O O
$0.5m \le s \le 1.0m$	-ờ́ờ́ờ́- Đ
$0s \le 0.5m$	-ờ́-ờ́-ờ́-ờ́-

23. จงเขียนผังงานจากงานที่มอบหมาย

		1						
AND WEDDEN	สาขาวิชา	อิเล็กทรอนิกส์	1	a 14				
	ชื่อวิชา	ไมโครคอนโทรลเลอร์	เบงานการพดสล	14 וויאט				
Part Color	รหัสวิชา	20105-2105		หน้าที่				
ECHNIC	ชื่องาน	งานโปรแกรมวัดระยะด้วยโมดูลอัลตร้าโจ	ชนิค HC-SR04	118				
24. พิมพ์โค้ดโ	24. พิมพ์โค้ดโปรแกรมตามผังงานในข้อที่ 23							
25. บันทึกไฟส	ล์โค้ด ชื่อ Lak	014-4						
26. ทำการ Co	26. ทำการ Compile โค้ด Lab14-4							
27. เชื่อมต่อส	าย USB กับ	บอร์ด Arduino Uno R3						
28. Upload	โปรแกรม Lal	b14-4 ลงบอรด Arduino UNO R3						
29. สังเกตวงจ	ารการทำงานเ	และบันทึกผลการทดลอง						
•••••								
30. สรุปผลกา	เรทดลอง							
•••••								
•••••				•••••				
••••••								
••••••								
X								